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Abstract. Renewed emphasis on the cost and environmental impacts of electricity are leading to a 
greater awareness for the need to measure and manage loads in buildings of all types.  In this pa-
per we focus on the residential buildings sector by looking at best available technologies for the 
commercial sector and discuss how they can be best applied to residences, by looking for effective 
solutions that can identify and track electricity use by the most important loads. 

1   Introduction 

There has been a renewed emphasis on managing energy consumption due to both economic 
and environmental pressures in recent years.  Home owners are faced with several challenges 
when considering ways to reduce their energy (electricity) consumption: 
 

• Generally only aggregate consumption (e.g., electricity use for the whole house) is 
known. 

• Energy conservation efforts are very difficult to plan and assess without disaggregated 
data by appliance or appliance type. 

• Available data does not provide enough information to help answer questions like: 
“how can I limit my electric bill to $50 per month?”, “will I get any savings if I lower 
my thermostat by a few degrees?” 

 
Our explorations have surprisingly not identified a broad range of existing solutions to ad-
dress these challenges.  Instead, we have identified many systems reporting aggregate data 
(i.e., measurements taken at the main electrical feed) with low cost, and some systems able to 
provide consumption reports for individual electrical outlets, designed to measure each appli-
ance separately. A few other systems collect data at the electrical circuit level, measuring the 
current flowing through the outgoing wire of each circuit breaker. 
 
Information has a price in this setting. The more information the system delivers, the more 
costly it is and vice-versa. Solutions that are tailored for tracking individual appliances, and 
hence deliver detailed information, have a high installation cost as they require more sensors 
to be placed and the implementation of a communication link between them. On the other 
hand, systems which only measure the total electrical load of a building require little effort for 
installation at the cost of less detailed information. 
 
The ideal setup is one where the hardware/installation costs are low, and the amount of in-
formation obtained from it is high. This is precisely what we would like to achieve. This pa-
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per describes the challenges and requirements for automatically disaggregating the total elec-
trical load into individual load components. 

1.1   Previous Work 

One primary type of load monitoring is referred to as Non-Intrusive Load Monitoring 
(NILM), because it allows tracking appliance-specific loads without intruding (placing sen-
sors or other devices) into the consumer’s property. Many researchers have worked on this 
problem. The solutions, in general, consist of the following steps: 
 

• Feature extraction: voltage and current waveforms are captured, and different features 
are extracted from them (i.e., real/reactive power, harmonics, etc.). These calculations 
occur at different time scales, depending on the specific solution. 

• Event detection: changes in the features extracted above, according to dynamic or 
static thresholds, are detected and flagged as events for later identification. 

• Pattern recognition: flagged events are processed using a trained algorithm that 
matches the sample feature-set with known and labeled events previously recorded 
(where previously can mean before installation of the system or during the operation 
process). The set of known and labeled events are often called appliance signatures, be-
cause they are a collection of features that distinguish an appliance event from others. 
 

Our literature survey suggests that there exist feasible solutions to the problem so far. These 
solutions have incrementally expanded the types of features used to identify individual appli-
ances. Initially, Hart (1992) patented a method for disaggregating individual electrical loads 
from a residential building using normalized real and reactive power measurements, obtained 
at the main feed and sampled at 1Hz (Hertz). This work was later improved by Norford and 
Leeb (1996) by introducing transient event detection to account for appliances with similar 
characteristics in the real and reactive power signature space. The sampling rate was in-
creased for this implementation, although there is no reference to the precise value they used. 
Finally, Laughman et al. (2003) describe using current harmonics (3rd and 5th) as another 
feature to better deal with continuously variable loads, and improve the disaggregation proc-
ess.  
 
Cole and Albicki (1998) developed a modified version of Hart's algorithm which incorporates 
a logical analysis to separate between simultaneous on/off events. Farinaccio and Zmeureanu 
(1999) developed a rule-based system to disaggregate the total electricity consumption. Mu-
rata and Onoda (2002) also built on top of Hart's algorithm and incorporated radial basis func-
tion networks to estimate the power consumption of inverter type appliances. A neural net-
work algorithm implementation is discussed by Prudenzi (2002) to identify large domestic 
appliances using 15 minute sampled data. Baranski and Voss (2004) present a complex algo-
rithm combining clustering, genetic algorithms, finite-state machines and heuristics to be used 
with data acquired from an optical sensor installed on the utility's meter, greatly reducing the 
cost of implementation, assuming 1 Hz sampling rate. 
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2   Technological Challenges 

To understand the technological challenges posed by this problem, one first needs to under-
stand the signals being studied. Particularly, it is necessary to understand what information is 
encoded at different frequencies. 

2.1   Understanding the Phenomenon 

Electricity in the United States and in many other parts of the world is delivered as alternating 
current (AC) at 60Hz. This means that the sinusoidal current and voltage waveforms have a 
period of 1/60 of a second. Different appliances in a residence draw different amounts of cur-
rent, and can do so in different ways. If the load is completely resistive, such as a toaster oven 
or an incandescent light bulb, then the current and voltage waveforms are in phase (e.g., their 
peaks coincide). If, on the other hand, there are inductive or capacitive elements on the load 
as it is the case with AC motors and lamp ballasts, then there will be a phase shift between the 
waveforms. 
 
Power on an AC circuit is a complex quantity which can be computed from the current and 
voltage waveforms. When these waveforms are in phase the resulting power is all positive, 
and it is said to be entirely consumed by the appliance. However, when there is a phase shift 
between the waveforms, the resulting power can be negative in some portions of the 60 Hz 
cycle (where the voltage and current have opposite signs), indicating that part of the power is 
consumed by the appliance, while another part of it is stored and later returned to the source. 
The effect of this phase shift on power consumption is depicted in Figure 1. 

 
If the load is completely resis-
tive such as a toaster oven or 
an incandescent light bulb, 
then the current and voltage 
waveforms are in phase. If, on 
the other hand, there are induc-
tive or capacitive elements on 
the load as it is the case with 
AC motors and lamp ballasts, 
then there will be a phase shift 
between the waveforms.  
 
The ability of a circuit to per-
form work at a particular time 
is known as real power. The 
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ig. 1. Average (light blue) and instantaneous (dark blue) power computed from
he voltage (red) and current (green) waveforms. It can be seen that the current
aveform is out of phase with the voltage waveform, causing portions of the

nstantaneous power to become negative. 
power that is stored and re-
turned is defined by the term 

eactive power. Apparent power is computed by multiplying the RMS values of the voltage 
nd current waveforms. The ratio between real and apparent power is known as the power 
actor, and can be used to calculate the shift between the current and voltage waveforms.  

o be able to characterize the shape of this signal in the time domain, we would need to sam-
le it at more than five times the frequency of interest: a rule of thumb for accurately repro-
ucing any waveform. Alternatively, if we were only interested in the frequency domain then 
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a 120Hz sampling rate, two times the frequency of interest, would suffice according to the 
Nyquist-Shannon sampling theorem. This theorem states that to capture the highest frequency 
component of interest in a signal, one must sample at more than twice that frequency. With 
this last sampling rate, most of the traditional power metrics, such as root mean square (RMS) 
voltage, RMS current, real power, reactive power, and others can be computed. 
 
Some appliances, such as the switching power supply in some personal computers, have a 
non-sinusoidal current draw and introduce new higher frequency components to the signal, 
known as harmonics, which are integer multiples of the fundamental frequency (60Hz). As an 
example, the 5th harmonic would be at 300Hz. 
 
To capture current harmonics, the sampling rate needs to be increased accordingly. Again, if 
only frequency domain information is needed, the Nyquist-Shannon sampling theorem tells us 
we would need to sample at twice the frequency of the highest harmonic we are interested in 
(600Hz for the above example). Since different appliances with a non-sinusoidal current draw 
have different harmonic characteristics, this information can turn out to be useful for our dis-
aggregation purpose. 
 
The start-up draw of different appliances is also characteristic for each appliance-type. Such 
transient events can be as short as a few milliseconds and as long as several minutes. To cap-
ture those with a short duration, a sampling rate in the order of kHz is needed. Norford and 
Leeb (1996) used 8 kHz for their application involving electric motors, for example. 
 
There is information at an even higher level of the frequency spectrum. Patel et al. (2007) 
showed that the mechanical activation of a light switch generated electrical noise which could 
be captured and identified using a 100MHz sampling rate. 

2.2   Sensors 

As discussed previously, the amount of information we can obtain from the signal is directly 
related to the sampling rate used. Most of the commercially available power-metering tech-
nologies we have found in our investigation have an internal sampling frequency high enough 
to deal with short start-up transients. However, the external reporting rate is generally much 
slower (less or equal than 1Hz), as these solutions use custom algorithms to extract features 
out of the high-sampling frequency data, and produce a down-sampled summary in terms of 
RMS voltage, current, power, etc. 
 
There is certainly some value in these down-sampled data sets. But whatever information is 
not computed from the raw values and cannot be obtained with the down-sampled data is lost. 
This is one of the main challenges: commercially available power monitoring solutions im-
plement fixed algorithms that compress the raw data in a way that is appropriate for power 
quality or aggregate consumption monitoring (e.g., they measure at 50 kHz but only report an 
average at 1 Hz). These algorithms are not necessarily the appropriate ones needed for load 
disaggregation. 
 
An alternative approach is to use a general purpose data acquisition board to capture the raw 
current and voltage waveforms at a reasonable sampling rate, and develop the algorithms for 
extracting the necessary information from these data. The hardware costs of this solution are 
much lower, but implementing the feature extraction algorithms would require extra effort. 
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2.3   Meter Inconsistencies 

Assuming that the necessary data is available, there are still other challenges to face. Appli-
ance signatures (collection of features associated with an appliance event) are closely related 
to the technology used to measure them, meaning that each different commercial power meter 
could yield different values for these features. To test this Figure 2 shows the results of using 
three different power meters (EnerSure by Trendpoint Systems, WattsUp Pro and the Model 
21-1850/CI Digital Power Meter by Brand Electronics), and obtained average steady-state 
real power and power factor readings for a fluorescent lamp and a toaster, which are examples 
of a completely resistive load (toaster) and one with a reactive power component (fluorescent 
lamp with ballast). 

 
Fig. 2. Average steady-state consumption of a fluorescent lamp and a toaster measured using three different 
metering technologies (EnerSure by Trendpoint Systems, WattsUp Pro and 21-1850/CI Digital Power Meter by 
Brand Electronics). Horizontal axis shows true power, and vertical axis represents power factor. 

Given that the measurements are not consistent, the generated signatures would be character-
istic not only of the appliance but also of the metering technology, and so, generalizations 
become much more difficult. 
 
Household appliances change their behavior with time (from malfunction, decay, etc.), and so 
does their signature. This can work to our advantage, if we are interested in not only disag-
gregating the individual loads from the main feed, but also in tracking their efficiency. Nor-
ford and Leeb (1996), for example, took advantage of this fact to implement a fault-detection 
algorithm for HVAC systems. However, this issue also makes the task of disaggregation more 
difficult, because appliance signatures may change over time but must still be recognized as 
belonging to a single appliance.  
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3   Pattern Recognition Challenges 

So far we have discussed the technological challenges to extracting important features out of 
the aggregate electrical signal in a residential building. Just as a prism does to light, or a Fast 
Fourier Transform does to a time-domain signal, these extracted features provide us with a 
more complex characterization of the original signal that better represents some of the details 
that interest us. 
 
The next step is to explain how to recognize the effects of individual appliances in this new 
representation of the signal. In other words, and maintaining the prism analogy, how can we 
infer which object is the source of the light coming into the prism? 
Two other processes need to be defined before we answer this question. The first involves 
detecting a change in the signal, which could be related to a change in the consumption of an 
appliance or group of appliances at any given time. This is called event detection. 
 
The second process, pattern recognition, involves matching the features associated with the 
detected change, to a set of known features in order to provide this event with a label. 

3.1   Event Detection 

For a human, especially for a trained one, detecting changes in extracted features is not a hard 
task. Visual inspection of the values is usually sufficient. However, we need to reproduce this 
ability algorithmically in order to automate the process. 
 
There are many ways in which events can be defined. For example, events can be changes in 
the average real power exceeding a certain threshold, the appearance of a known startup tran-
sient shape, or any other suitable condition.  After the selection of any of these as the pre-
ferred method, one still needs to define the parameters for it to work correctly. It might well 
be that the chosen event detection method is not a single one, but rather a combination of 
many. 
 
Two obvious challenges arise for the event detection: defining events, and setting the appro-
priate threshold parameters for this definition. For example, if changes in the average real 
power that exceed a certain threshold are used for defining events then appliances that switch 
on and off very quickly will be masked by the averaging window, and will not be identified. 
Defining the size of this window, the threshold and other parameters is also critical and each 
combination of these leads has similar effects (excluding some appliances and including oth-
ers). 

3.2   Pattern Recognition 

The objective of the pattern recognition algorithm is to assign a label to the collection features 
previously extracted from the current and voltage waveforms, associated with each event that 
is detected.  
 
As we discussed in previous sections, many researchers have tried different implementations 
of this process (using neural networks, cluster matching, etc). Almost all of the examined so-
lutions were based on off-line training of the algorithm. This training would result in what 
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some call an “Appliance Signature Library”. Due to the particular sampling frequency, aver-
aging techniques, etc., this signature library would be tied to the equipment used to obtain the 
measurements, and to some degree to the individual appliances that were used as exemplars. 
 
Building a library that includes all possible appliances (type, make, model, year, etc.) is im-
practical if not impossible. It is conceivable then that the task of identifying new loads would 
be done on-line (during the operation of the system) either by applying an ‘unknown’ label to 
every new event detected and having then allowing the user to correct this, or by using a net-
worked, distributed approach much as the Gracenote’s MusicID®1 allows users to both 
download and upload music files metadata, which can then be associated with the unique au-
dio “fingerprint” for each music file. 
 
If, on the other hand, on-line learning is allowed, then the matching process would need to 
rely on historical data to function properly. Whenever a new event is detected, and no match 
for the features associated with it is found, the algorithm would assign a new label to the 
event (i.e., “Unknown001”) and store it. If this event is repeated, a match will be found and 
the same label would be applied to any future repetitions of it. It is reasonable to envision 
having the user modify these unknown labels and assign them appropriate values. 
 
The importance of the event detection algorithm becomes clear. If, for instance, noise in the 
signal is detected as an event, many “new appliances” would be recognized by the pattern 
recognition algorithm.  

4    Feedback 

The ultimate goal of this event detection and classification is energy conservation through 
behavior modification. Therefore the information must be identified and presented in such a 
way that the user is both motivated and guided toward reducing and/or time-shifting their 
energy use. Numerous studies have shown 10-15% reductions in energy use with various 
kinds of feedback from household electricity metering systems (Socolow, 1978; McClelland 
& Cook, 1979; Hayes & Cone, 1977, 1981). However, most conservation programs either 
deliver specific advice to a general audience (e.g. the “energy saving tips” in utility bills) or 
standardized information regarding a specific home’s consumption (e.g. the instantaneous 
power level and daily cumulative energy usage.)  
 
Having individual appliance energy use data will allow feedback that is both specific about 
the conservation actions to take and also reflects the effects of the user’s actions. Instantane-
ous gas-consumption gauges in cars have sometimes been offered as a model for a household 
energy meter, but electricity use behavior is much more complex than the acceleration of a 
car. Not only are there many different regulation points—dozens of appliances rather than a 
single pedal—but instantaneous consumption is not an adequate metric. Fluctuations due to 
time of day and the cycles of large loads such as the refrigerator could easily obscure the ef-
fects of behavior change. Averaging consumption over longer periods of time can smooth out 
some of the noise but at the expense of immediate feedback; of all the things the user did dif-
ferently last week, which ones were responsible for the drop in consumption?  
 
The risk of presenting detailed real-time feedback is of creating an interface so complicated 
that it serves only to intimidate the user without educating or assisting them. This suggests 
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that the detailed data should be filtered to provide the most salient morsels, such as a sudden 
change in the usage pattern of a major appliance. As another example, heuristics could be 
added to draw attention to low-level but high-duty-cycle appliances (such as phantom loads). 
However, more research is required to determine what information is most useful to present 
based on the disaggregated consumption data available at any given time. 

5    Conclusions 

We have presented the hardware and software challenges, as well as the relevance of feed-
back in the context of energy consumption management solutions. We argued that a system 
with a low installation cost, high information retrieval rate and a good user interface is the 
ideal solution, and presented guidelines for how to achieve such a setup. But we still have to 
answer the question of why these solutions are not readily available on the market already?  
 
We believe that on the hardware side, the cost of computing power has kept these solutions 
from becoming widely produced and adopted. The signal processing and machine learning 
algorithms also need to achieve a better performance in order to make these solutions feasible. 
Lastly, but most importantly, there is a great need for improved user interfaces which effec-
tively balance the tradeoffs between providing too much and too little information to the resi-
dents. 
 
Disaggregating the individual loads from measuring the total current and voltage waveforms 
in a residential building has been shown to be theoretically possible, and some actual imple-
mentations of this idea show that it is indeed feasible. However, more work on the area needs 
to be done in order to make this type of solution a reality. 
 
We provide broad suggestions that would help improve current solutions: 
 

• Make use of other available sensor data (i.e., light intensity measurements, tempera-
ture, etc.), and correlate it with the electricity data in order to improve disaggregation. 
For example, we could envision correlating the change in light intensity caused by 
turning on a light bulb on a room with the change in power consumption to infer that 
this specific change in power was due to a light bulb. 

• Take advantage of existing computing power in modern residential buildings to lower 
the cost of the hardware required to process the signals and run the pattern recognition 
algorithms. 

• Improve the learning algorithms by utilizing user-feedback through an interface. This 
feedback mechanism should be non-intrusive and must be designed to easily blend with 
the resident’s normal daily activities. 
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